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ABSTRACT 
In order to maintain a reliable and economic electric power 
supply, the maintenance of power plants is becoming 
increasingly important. In this paper, a formulation that enables 
ant colony optimization (ACO) algorithms to be applied to the 
power plant maintenance scheduling optimization (PPMSO) 
problem is developed and tested on a 21-unit case study. A 
heuristic formulation is introduced and its effectiveness in 
solving the problem is investigated. The performance of two 
different ACO algorithms is compared, including Best Ant 
System (BAS) and Max-Min Ant System (MMAS), and a 
detailed sensitivity analysis is conducted on the parameters 
controlling the searching behavior of ACO algorithms. The 
results obtained indicate that the performance of the two ACO 
algorithms investigated is significantly better than that of a 
number of other metaheuristics, such as genetic algorithms and 
simulated annealing, which have been applied to the same case 
study previously. In addition, use of the heuristics significantly 
improves algorithm performance.  Also, ACO is found to have 
similar performance for the case study considered across an 
identified range of parameter values. 

Categories and Subject Descriptors 
1.2.8 [Artificial Intelligence]: Problem Solving, Control 
methods, and Search – heuristics methods, scheduling. 

1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 
–  intelligent agents, multiagent systems. 

General Terms 
Algorithms; Management; Performance; Experimentation. 

Keywords 
Ant Colony Optimization; power plant maintenance scheduling; 
heuristics; BAS; MMAS; GA; SA; sensitivity analysis; optimum 
parameter. 
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1. INTRODUCTION 
As a result of rapid development, global power demand has 
increased dramatically over the past decade. In order to achieve a 
reliable and economic electric power supply, adequate 
maintenance of power plants is vital. Maintenance is aimed at 
extending the lifetime of power generating facilities, or at least 
extending the mean time to the next failure. In addition, an 
effective maintenance policy can reduce the frequency of service 
interruptions and their consequences [16].   
Over the past two decades, many studies have focused on the 
development of methods for optimizing maintenance schedules 
for power plants. Traditionally, mathematical programming 
approaches have been used, including dynamic programming 
[22], integer programming [9] and mixed-integer programming 
[1]. More recently, evolutionary algorithms (EAs) and other 
metaheuristics have been favored, including genetic algorithms 
(GAs) [2], simulated annealing (SA) [19] and tabu search (TS) 
[15]. These methods have been shown to outperform 
mathematical programming methods and other conventional 
approaches in terms of the quality of the solutions found, as well 
as computational efficiency [2, 19]. 
Ant Colony Optimization is a relatively new metaheuristic that is 
based on the foraging behaviors of ant colonies [12]. Compared 
to other optimization methods, such as GA, ACO has been found 
to produce better solutions in terms of computational efficiency 
and quality when applied to a number of combinatorial 
optimization problems, such as the Traveling Salesman Problem 
(TSP) [10] and De Jong’s test function [21]. Recently, ACO has 
also been successfully applied to scheduling problems such as the 
resource-constrained project scheduling (RCPSP), single machine 
tardiness, job-shop and flow-shop problems [3, 6, 18, 20]. 
Interested readers are referred to [4] for the state-of-the-art 
categorization of scheduling problems. 
The objective of this study is to introduce a formulation that 
enables ACO to be applied to the power plant maintenance 
scheduling optimization (PPMSO) problem, including the 
development of a formulation for the incorporation of heuristic 
information, which is used as part of the decision policy at each 
decision point. The proposed formulation is tested on a modified 
version of the 21-unit problem introduced by Aldridge et al. [2] 
and the results obtained using ACO are compared with those 
obtained using Genetic Algorithms (GAs) and Simulated 
Annealing (SA) in previous studies [2, 7, 8]. Sensitivity analysis 
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is also carried out to gain a better understanding of the role each 
parameter plays in the optimization process and to identify the 
‘optimum’ parameter set for the problem considered. 

2. APPLICATION OF ACO TO POWER 
PLANT MAINTENANCE SCHEDULING 
OPTIMIZATION 

In the PPMSO problem, decisions have to be made with regard to 
the timing of the maintenance periods of each of the machines 
(units) used for power generation.  Generally, the duration of the 
maintenance period for each machine is fixed, and the decision 
variable is the maintenance start time.  The aim of the 
optimization procedure is to obtain a maintenance schedule that 
minimizes the objective function subject to a number of 
constraints.  The objectives generally include cost minimization, 
system reliability maximization, or both [22]. The most 
commonly used constraints are load constraints, resources 
constraints and the window of time during which maintenance 
can be carried out.  
It should be noted that the PPMSO problem is different from 
RCPSPs to which ACO has been applied to recently [18]. This is 
because in the PPMSO problem, precedence relations between 
maintenance activities are emphasized much less than the 
absolute periods within a planning horizon where maintenance 
task are carried out, which are strongly dependent upon factors 
such as seasonal inflows (in the case of hydropower), daily 
demands and the maintenance time frame of individual 
generating units. Therefore, instead of using the generic schedule 
generation scheme as outlined in [18], an activity-oriented 
schedule generation procedure, coupled with a finite number of 
optional decision paths, is proposed in this paper for the PPMSO 
problem. In addition, the PPMSO is not necessarily resource-
constrained. In many instances, the dominant constraint is load, 
which cannot be accounted for explicitly, and has to be checked 
once a complete trial maintenance schedule has been generated 
with the aid of a simulation model.  
Before the PPMSO problem can be optimized using ACO, it has 
to be expressed in terms of a set of points at which decisions have 
to be made (D = {dn, where n=1,2,…N}) and the set of options 
that is available at each decision point (F = {ln,j, where dn∈D, 
j=1,2,…, kn}) [18]. The decision points consist of the N units at 
which maintenance needs to be carried out and the corresponding 
decisions are the kn potential commencement times for 
maintenance (Figure 2.1). 

 
 
 
 
 
 
 
 
 

Figure 2.1: ACO algorithm applied to the PPMSO problem 
As part of the ACO algorithm, ants generate trial maintenance 
schedules by choosing a maintenance commencement date for 
each of the units to be maintained.  The probability that a 
particular commencement date will be chosen from the set of 

available options at a particular decision point is a function of the 
pheromone and the local desirability of that option based on 
heuristic information (generally referred to as the heuristic), as 
shown in Eq. 2.1. 
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∑
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(Eq. 2.1)

where pn,j(t) is the probability that start time ln,j is chosen for 
maintenance of unit dn in iteration t; τn,j(t) is the pheromone 
intensity deposited on start time ln,j for unit dn in iteration t; ηn,j is 
the heuristic for start time ln,j for unit dn; kn is the total number of 
start time periods available for unit dn; α is the relative 
importance of pheromone intensity; β is the relative importance 
of the heuristic. 
The pheromone level associated with a particular option (i.e. 
maintenance commencement date for a particular unit) is a 
reflection of the quality of the maintenance schedules that have 
been generated that contain this particular option.  The heuristic 
associated with a particular option is related to the likely quality 
of a solution that contains this option based on some heuristic 
information. It can be seen from Eq. 2.1 that during the early 
stages of an ACO run, before pheromone trails are significantly 
distinct, heuristic information is the dominant factor affecting the 
selection of decision paths. In other words, the heuristic plays a 
crucial role in defining the region in a solution search space in 
which the ACO algorithm commences its search. As the way in 
which heuristic information is represented mathematically is 
problem specific [14], the transformation of any heuristic 
information into a formulation to be used in the ACO algorithm is 
an important task.  
As ACO has not been previously applied to the PPMSO problem, 
a heuristic formulation (Eq. 2.2) is introduced for a typical 
PPMSO problem in this paper. Furthermore, the following 
variables are defined: 

• Jn,j ={ ln,j ≤  k ≤  ln,j + durn – 1} is the set of time periods k such 
that if the maintenance of unit dn starts at period ln,j, that unit 
will be in maintenance during period k. 

• YManV(k)=0 is switched to 1 if there is no personpower violation 
in time period k. Otherwise it is switched to 0. 

• YLoadV(k)=0 is switched to 1 if there is no load violation in time 
period k. Otherwise it is switched to 0. 

ηn j, ηn j,
M

( )
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C
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⋅=  (Eq. 2.2)
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where ηn,j is the heuristic value of unit dn to start maintenance at 
time period ln,j; durn is the outage duration required for unit dn; 
Mn,j(k) is the prospective personpower available in reserve in 
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time period k if unit dn is maintained starting at period ln,j; Cn,j(k) 
is the prospective generation capacity available in reserve in time 
period k if unit dn is maintained starting at period ln,j. 
It can be seen from Eq. 2.2 that the heuristic formulation 
comprises personpower-related heuristics, ηn,j

Μ and load-related 
heuristics, ηn,j

C. ηn,j
Μ is designed to direct the optimization 

algorithm to regions in the search space where there are fewer 
personpower constraint violations. This is achieved 
mathematically by making the probability of a start time being 
chosen for any machine unit directly proportional to the 
prospective personpower available in reserve and inversely 
proportional to the amount of personpower shortfall. The same 
applies to ηn,j

C, where start times at which no tasks are scheduled 
are preferred to avoid violation of load constraints. It should be 
noted that where personpower and load constraints are easily 
satisfied inherently in a problem, the two heuristics are expected 
to evenly distribute maintenance tasks over the entire planning 
horizon, which potentially maximizes the overall reliability of a 
power system. In order to implement the heuristic, each ant is 
provided with a memory matrix on personpower reserve and 
another matrix on generation capacity reserve prior to 
construction of a trial solution, which is updated every time a unit 
maintenance commencement time is added to the partially 
completed schedule.   
Once a trial maintenance schedule has been constructed by 
choosing a maintenance commencement time at each decision 
point (i.e. for each machine to be maintained), taking into 
account pheromone levels and the heuristic information 
introduced above, one ant-cycle has been completed (Figure 2.1). 
After r ant-cycles, where r equals the number of ants used, the 
ACO algorithm enters the iteration-cycle (Figure 2.1). During 
this stage, the quality of the r trial solutions is evaluated using a 
simulation model, as part of which the objective function values, 
such as maintenance cost and power system reliability, are 
calculated and violations of any constraints are identified. The 
objective function values (OFVs) of these trial solutions are then 
determined by an evaluation function, which is the weighted sum 
of the objective function values and penalty costs associated with 
constraint violations. It should be noted that some constraint 
violations can only be identified once a complete trial solution 
has been constructed, and hence these constraints cannot be 
accounted for explicitly, necessitating the use of penalty 
functions. 
Next, pheromone is updated in a way that reinforces good 
solutions.  The general form of the pheromone update equation is 
given by: 

τn j, t 1+( ) ρ τn j, t( ) τn j, t( )∆+⋅=  (Eq. 2.3)

where τn,j (t+1) is the pheromone intensity of decision path ln,j in 
iteration (t+1); (1-ρ) is the pheromone evaporation rate; ∆ τn,j(t) is 
the pheromone awarded to decision path ln,j in iteration t.  

The way the change in pheromone, ∆ τn,j(t), is calculated can vary 
depending on the particular ACO algorithm used.  In the Ant 
System [13], the pheromone associated with all of the decision 
paths chosen during the r ant cycles is updated upon completion 
of an iteration. More recently, alternative pheromone updating 
schemes have been proposed, including the Best-Ant System 
(BAS) [17], Max-Min Ant System (MMAS) [20], Ant Colony 

system (ACS) [11] and Elitist-Rank Ant System [5]. In this study, 
the BAS and MMAS algorithms are adopted due to their superior 
performance in previous studies [17, 20]. The BAS represents a 
limit state of the Elitist-Rank Ant System in which only the paths 
that are chosen by the top-ranking ant are reinforced.  This places 
greater emphasis on exploitation of the search space, resulting in 
faster convergence.  Using the BAS, the change in pheromone 
from one iteration to the next is given by: 

τ∗n j, t( )∆
Q

OFVn j, t( )
------------------------- if n j best ant∈,

0 otherwise





=

 

(Eq. 2.4)

where Q is the reward factor. 
MMAS also uses information from the best performing ant in the 
pheromone updating process (Eq. 2.4), but imposes upper and 
lower bounds (τmax and τmin) on the pheromone intensities in 
order to prevent premature convergence and greater exploration 
of the solution surface.  The τmax and τmin values are given by: 

τmax t 1+( )
1

1 ρ–
------------ Q

OFVbest ant t( )
---------------------------------⋅=

 
(Eq. 2.5)

τmin t 1+( )
τmax t 1+( ) 1 pbest

n–( )

avg 1–( ) pbest
n

--------------------------------------------------------=
 

(Eq. 2.6)

where pbest is the probability that the paths of the current 
iteration-best-solution, OFVbest ant(t), will be selected, given that 
non-iteration best-options have a pheromone level of τmin(t) and 
all iteration-best options have a pheromone level of τmax(t). 
The algorithm terminates when either the number of iterations 
specified is met or a stagnation of the evaluation function value is 
encountered. 

3. CASE STUDY 
3.1 Description 
The case study considered in this research is the 21-unit power 
plant maintenance problem investigated by [2], [7] and [8] using 
a number of metaheuristics.  This case study is a modified 
version of the 21-unit problem introduced by [22], and consists of 
21 generating facilities, of which 20 units are thermal and one is 
hydropower. The system details are listed in Table 3.1. All of the 
machines are to be scheduled for maintenance in the first or 
second half of a year’s planning horizon, which results in a 
combinatorial optimization problem with approximately 5.18 x 
1028 total possible solutions. The objective of the problem is to 
even out reserve generation capacity over the planning horizon, 
which can be achieved by minimizing the sum of squares of the 
reserve (SSR) generation capacity in each week. A single peak 
load, 4739 MW, and a limit of 20 maintenance staff are used as 
demand and personpower constraints, respectively. 
As mentioned in Section 1, a number of metaheuristics have been 
applied to this problem. Aldridge et. al [2] used generational 
(GN) and steady state (SS) Genetic Algorithms (GAs) and found 
that the GAs outperformed a heuristic method, which schedules 
maintenance outages in order of decreasing capacity. By coupling 
GAs with fuzzy logic, which utilizes knowledge-based 
experience in the problem formulation, Dahal et. al [7] obtained a 
maintenance schedule that resulted in a better objective value 
than the best solution given by [2], although this required slight 
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violations of personpower constraints. In another study, Dahal et. 
al [8] applied Simulated Annealing (SA), a Simple GA and an 
Inoculated GA to this problem, further highlighting the ability of 
metaheuristics to outperform more traditional methods used for 
optimizing power plant maintenance scheduling. The best results 
obtained by the studies mentioned above are summarized in 
Section 3.4.3. 

3.2 Mathematical Formulation 
The specification of this maintenance scheduling optimization 
problem can be represented by mathematical equations using 
binary (1-0) variables, which indicate the state of a unit in a given 
time period.  In the case study under consideration, a time period 
of one week has been adopted. Xn,t can be switched to 1 to 
indicate that unit dn is scheduled to be maintained during period t. 
Otherwise, Xn,t is switched to a value of 0. Furthermore, the 
following sets of variables need to be defined: 

• Tn = {t∈T: earn ≤  t ≤  latn – durn + 1} for each unit dn, which 
is the set of periods when maintenance of unit dn may start. 

• Sn,t = {k∈T: t - durn + 1 ≤  k ≤  t} is the set of start time 
periods k, such that if the maintenance of unit dn starts at 
period k, that unit will be in maintenance during period t. 

• Dt = {n: t∈Tn} is the set of units which is considered for 
maintenance in period t. 

where t is the index of periods; T is the set of indices of periods 
in the planning horizon; dn is the index of generating units; earn is 
the earliest period for maintenance of unit dn to begin; latn is the 
latest period for maintenance of unit dn to end; durn is the 
duration of maintenance for unit dn. 
In the case study considered, the number of units to be 
maintained, N is 21.  Consequently, the set of decision points is 
given by D = {d1, d2,…, d21}.  In addition, set F can be defined 
such that F = {dn∈D, j∈Tn: ln,j}. For example, unit 8 is allowed 
to undergo maintenance within the second half of the year, which 
must be completed by Week 52 (Table 3.1). Since a maintenance 
job for this unit takes 6 days, the earliest and latest date for Unit 8 
to start its maintenance are Weeks 26 and 47, respectively. 
Hence, the decision paths associated with decision point d8 are 
{l8,1=26, l8,2=27,…, l8,22=47}.  
Mathematically, this optimization problem can be defined as the 
determination of maintenance schedule(s) such that SSR, which 
is defined as the sum of square of reserve generation capacity 
within the planning horizon, is minimized (Eq. 3.1) without 
violating the personpower and load constraints  (Eqs. 3.2 & 3.3).  

where Lt is the anticipated load demand for period t; Pn is the 
generating capacity of unit dn.; Mn,k is the personpower needed 
by unit dn at period k. 

Upon completion of an ant-cycle, the maintenance schedule 
generated is assessed by a simulation model (Figure 2.1) that 
returns an overall quality of the schedule. The quality of a 
maintenance schedule in this problem is given by an objective 
function value (OFV), which is a function of the value of SSR 
and the total violation of both constraints (Eq. 3.4). The 
calculations of constraint violations are given in Eq. 3.5 to 3.8. 

OFV = cR . SSR + cM . ManViotot + cL . LoadViotot (Eq. 3.4)

where SSR is the sum of squares of reserve generation capacity; 
cR is the relative weight of SSR; ManViotot is the total 
personpower violation; cM is the relative weight of personpower 
violation; LoadViotot is the total load violation; cLis the relative 
weight of the load violation.  

For a proposed maintenance schedule, the total personpower 
violation, ManViotot, is given by summation of the personpower 
shortage in all periods within the planning horizon, such that  

ManViotot Xn k, Mn k, AMt–
k S

n t,∈
∑

n D
t∈

∑ 
 
 

t T
MV∈

∑= (Eq. 3.5)

where TMV is the periods where personpower constraints are 
violated (Eq. 3.6).  

TMV t: Xn k, Mn k,
k S

n t,∈
∑

n D
t∈

∑ AM t>
 
 
 =

 
(Eq. 3.6)

where AMt is the available personpower at period t. 

Mi n SSR Pn Xn k, Pn Lt–
k S

n t,∈
∑

n D
t∈

∑–
n 1=

N

∑
 
 
 
 

2

t T∈
∑=

 
 
 
 
 

(Eq. 3.1)

Xn k, Mn k, 20≤
k S

n t,∈
∑

n D
t∈

∑
 

(Eq. 3.2)

Xn k, P n 4739≤
k S

n t,∈
∑

n D
t∈

∑
 

(Eq. 3.3)

Table 3.1: Details of 21-unit system [7] 

Unit 
number

Capacity 
(MW) 

Outage 
Duration 
(weeks) 

Maintenance 
Outage 

Window 
(weeks) 

Personpower 
required for 
each week 

1 555 7 1-26 10, 10, 5, 5, 5, 
5, 3 

2 555 5 27-52 10, 10, 10, 5, 5
3 180 2 1-26 15, 15 
4 180 1 1-26 20 

5 640 5 27-52 10, 10, 10, 10, 
10 

6 640 3 1-26 15, 15, 15 
7 640 3 1-26 15, 15, 15 

8 555 6 27-52 10, 10, 10, 5, 
5, 5 

9 276 10 1-26 3, 2, 2, 2, 2, 2, 
2, 2, 2, 3 

10 140 4 1-26 10, 10, 5, 5 
11 90 1 1-26 20 
12 76 3 27-52 10, 15, 15 
13 76 2 1-26 15, 15 
14 94 4 1-26 10, 10, 10, 10 
15 39 2 1-26 15, 15 
16 188 2 1-26 15, 15 
17 58 1 27-52 20 
18 48 2 27-52 15, 15 
19 137 1 27-52 15 
20 469 4 27-52 10, 10, 10, 10 
21 52 3 1-26 10, 10, 10 
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The total load violation, LoadViotot is the summation of load 
shortfall in all periods within the planning horizon. The 
calculation of this value may be represented by the following 
equation. 

LoadVio tot Pn Xn k, Pn
k S

n t,∈
∑

n D
t∈

∑–
n
∑ 

 
 

t T
LV∈

∑=
 

(Eq. 3.7)

where TLV is the periods where load constraints are violated, and 
is given by: 

TLV t: Pn X n k, Pn Lt<
k S

n t,∈
∑

n D
t∈

∑–
n
∑

 
 
 =

 
(Eq. 3.8)

3.3 Analysis Conducted 
3.3.1 Assessment of heuristic information and ACO 

algorithms 
The ACO formulation introduced in Section 2 was used to solve 
the 21-unit case problem. For the heuristic information in Eq. 2.1, 
Eq. 2.2 was used and the performance obtained when the 
heuristic information was used was compared with that obtained 
when no heuristic information was used. For both scenarios, the 
BAS and MMAS algorithms were applied to the problem. Due to 
the probabilistic nature of ACO methods, 14 runs with different 
random starting conditions were conducted for each of the 
scenarios. A total of 150 iterations, which is equivalent to the 
construction of 30,000 trial solutions in each run, was chosen as 
the termination criterion of all runs to provide a basis for direct 
comparison between the performance of ACO and that of other 
metaheuristics used for the same case study. It should be noted 
that the values of the parameters controlling the behaviour of the 
ACO algorithms used (Table 3.2) were chosen based on 
preliminary sensitivity analysis.  The same parameters were used 
for all optimisation runs. 

Table 3.2  Chosen values of ACO parameters 

r ρ α β cR w1 
200 0.7 1 1 1 7 

pbest(MMAS only) Q τ0 cL cM w2 
0.7 5x105 1,000 200 1 x105 1 

3.3.2 Sensitivity Analysis 
As ACO algorithms rely on a number of user-defined parameters 
that control their behavior, extensive sensitivity analyses were 
conducted in 3 stages to study the importance of each parameter 
and to determine the optimum parameter set for the problem 
considered. The ACO algorithm that performed best in the 
optimization runs specified in Section 3.3.1 was used in the 
sensitivity analysis. 
The purpose of stage 1 of the sensitivity analyses was to obtain a 
detailed understanding of the impact of each of the user-defined 
ACO parameters on the algorithms’ searching behavior. In order 
to achieve this, each parameter was varied over a specified range 
(Table 3.3), while all other parameters were kept at their 
‘standard’ values (Table 3.2). The parameters investigated as part 
of the sensitivity analyses are summarized in Table 3.3. The 
relative weight of SSR, cR in Eq. 3.4 was set to 1 as a control. 
In Stage 2, a best parameter set for the case study considered was 
derived based on the understanding of the parameters obtained as 
part of Stage 1 of the sensitivity analysis. Initially, the parameter 

that was found to have the biggest impact on algorithm 
performance in Stage 1 was varied over its prescribed range, 
while all other parameters were kept at their ‘standard’ values.  
The value of the parameter investigated that gave the best 
performance was chosen, and then sensitivity analysis was 
conducted on the parameter that had the second biggest impact 
during Stage 1 and so on. This process was repeated until the best 
set of all parameters was obtained.  
In Stage 3, 20 different random number seeds (different from the 
14 random number seeds used in previous runs) were used to 
solve the problem considered with the best parameter set derived. 
The results were compared with those obtained using the 
‘standard’ parameter values shown in Table 3.2. 

Table 3.3: ACO parameters investigated as part of sensitivity 
analysis 

Parameter Description Range 
investigated

r Number of ants 100 to 1,000

τ0 Initial pheromone level 0 to 1x104 

cM Relative weight of personpower 
constraint violation in OFV (Eq. 3.4) 0 to 1x106 

cL Relative weight of load constraint 
violation in OFV (Eq. 3.4) 0 to 1,000 

pbest Only applicable to MMAS (Eq. 2.6) 0.05 to 1 
Q Reward factor 1 to 1x108 

ρ 1 - pheromone evaporation rate 0.1 to 1 

w1 Relative importance of personpower-
related heuristics (Eq. 2.2) 0 to 10 

w2 Relative importance of load-related 
heuristics (Eq. 2.2) 0 to 7 

α Relative importance of pheromone 0 to 3 

β 
Relative importance of heuristic 

information (Eq. 2.1) 0 to 2 

3.4 Results & Discussion 
3.4.1 Heuristic information and ACO algorithms 
The results obtained for the heuristic information formulation and 
ACO algorithms investigated are presented in Tables 3.4 and 3.5 
in terms of best, average, worst objective function values 
(referred to as OFVs hereafter) and the standard deviation of the 
OFVs. It should be noted that the various statistics were 
calculated for results with the same (‘standard’) ACO parameters, 
but with 14 different random starting positions in objective 
function space, as described previously.  
In order to gain a better understanding of the impact of heuristic 
information on the searching behavior of the two ACO 
algorithms, the iteration-best objective function value curve 
(referred to as IB-OFV curve hereafter) and the iteration-best 
SSR curve (referred to as IB-SSR curve hereafter) were examined 
(Figures 3.1 to 3.3). It should be noted that these curves were 
extracted from the results given by one of the random number 
seeds used. Theoretically, the gap between the IB-OFV (thicker) 
and IB-SSR (thinner) curves is the penalty cost incurred due to 
the violation of load plus personpower constraints. However, due 
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to the nature of the case study considered, the load constraint is 
always satisfied (refer to Section 3.4.2 for detailed explanation). 
Hence, the difference between the IB-OFV and IB-SSR curves 
can be treated as the violation of the personpower constraint only.  
Tables 3.4 and 3.5 indicate that, in general, the results obtained 
using MMAS are better than those obtained using BAS. It is 
clearly shown in Figure 3.1 that when no heuristic information 
was used, both ACO algorithms have searched in the regions of 
the solution space where constraints are severely violated. 
Despite its convergence later in the optimization to a solution 
without constraint violations, the solution found by the MMAS 
algorithm is ‘sub-optimal’, whereas no feasible solution was 
found using the BAS algorithm once convergence had occurred.  
When the heuristic information heuristic introduced in this paper 
was used, a new best-known solution was found by MMAS at 
about Iteration 135 (Figure 3.3), where convergence had occurred 
for BAS at this stage (Figure 3.2). This is due to a mechanism in 
MMAS that allows exploration of new solutions when 
convergence has occurred. In addition, the lower and upper 
bounds on pheromone trails used in MMAS are also designed to 
avoid premature convergence. On the basis of an unmatched, 
two-tailed t-test, MMAS is shown to be significantly better, at a 
significance level of 5%, than BAS with and without heuristic 
information. Tables 3.4 and 3.5 show that not only better OFVs 
were found for both ACO algorithms when heuristic information 
was incorporated, higher consistency (smaller standard deviation) 
of optimization outcome was also achieved. An unmatched, two-
tailed t-test provided statistical proof that the heuristic has a 
significant influence on finding the ‘good’ solutions in 
optimization runs.   

Table 3.4: Results given by Best Ant System (BAS)  
[% deviation from best-found OFV] 

 Best OFV 
(x105) 

Average OFV 
(x105) 

Worst OFV 
(x105) 

Std dev. 
(x105) 

No 
heuristics 

154.58 
[13.12] 

163.69 
 [19.79] 

175.40 
[28.36] 6.27 

With 
heuristics 136.81 [0.12] 137.60  

[0.70] 140.12 [2.54] 0.91 

 
Table 3.5: Results given by Max-Min Ant System (MMAS)  

[% deviation from best-found OFV] 

 Best OFV 
(x105) 

Average OFV 
(x105) 

Worst OFV 
(x105) 

Std dev. 
(x105) 

No 
heuristics 142.46 [4.25] 146.56     

[7.25] 
151.34 
[10.75] 3.1 

With 
heuristics 

136.65      
[0] 

136.87     
[0.16] 137.22 [0.42] 0.15 

 
Referring to Table 3.4, the high SSR-value given by the BAS 
algorithm when no heuristic was used is attributed to penalties 
due to constraint violation (gap between curves when converged 
in Figure 3.1). When heuristic information was used, the BAS 
algorithm converged to a ‘feasible’ best-found solution (Figure 
3.2), where constraints are not violated. This is because in the 
early stage of optimization, heuristic information has directed the 
algorithm to search in the regions where fewer constraints are 
violated (Figures 3.2 & 3.3). Therefore, the effect of heuristic 
information on the BAS algorithm is more pronounced than that 
on the MMAS algorithm, as concluded from the results in Tables  
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Figure 3.1: Results given by BAS & MMAS without heuristics 
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3.4 & 3.5. The results of the case study clearly demonstrate that 
heuristic information is vital in finding the good solutions during 
ACO runs for the PPMSO problem. 
Also, Fig 3.1 to 3.3 has clearly demonstrated the ability of 
pheromone in continuous searching for solutions of low OFVs 
and hence, determining the optimum/near-optimal solutions for 
the case study. 

3.4.2 Sensitivity Analysis 
Stage 1: The MMAS algorithm was used throughout the 
sensitivity analysis, as it was found to have performed best. 
Overall, it was found that initial pheromone level, τ0, reward 
factor, Q, and relative weight of load violation, cL in Eq. 3.1 have 
no impact on the outcome of this optimisation problem.  

In the MMAS algorithm, τ0 has to be set high enough so that all 
pheromone trails are equivalent to τmax at the end of the first 
iteration. Hence, the optimization outcome is the same, as long as 
τ0 is set to an arbitrarily high value.  
The amount of pheromone rewarded upon completion of an 
iteration is directly proportional to Q (Eq. 2.4). Despite being 
arbitrary, in BAS, the given rewards must retain a certain ratio in 
relation to τ0 on the decision paths so that neither ‘exploration’ 
nor ‘exploitation’ will be overly emphasized. However, this is not 
necessary in MMAS, as τmax, which acts as the ‘effective’ initial 
pheromone, and τmin, are adjusted according to the given reward 
factor, Q (Eq. 2.5) (τmax and τmin values corresponding to several 
arbitrary Q-values are given in Table 3.6). In this way, τ0 and Q 
are always kept at the same ratio, which resulted in exactly the 
same solution regardless of the Q-value. 

Table 3.6: Distances to best-found best-TMV SSRs’ given 
by different Q-values 

Reward factor, Q τmax OFVbest ant⋅  τmin OFVbest ant⋅

100 333.333 0.228394 

1000 3333.333 2.28394 

100000 333333.333 228.394 

 
It was realized in the optimization runs that as load constraints 
are not critical in this problem, similar results were achieved 
regardless of the cL-values used. The total generating capacity of 
this system is 5,688 MW, with a constant demand of 4,739 MW. 
Hence, when no machine is scheduled for maintenance, the 
system reserve capacity is 949 MW. Although 13 out of 21 of the 
maintenance tasks are required to be scheduled in the first outage 
window (weeks 1 to 26), most of them represent only a small 
amount of generating capacity that can be met easily in parallel, 
provided personpower constraints are satisfied. For the second 
outage window (weeks 26 to 52), despite the average generating 
capacity of the units being higher compared to the first outage 
window, the average maintenance duration of the units is shorter. 
Therefore, the maintenance tasks can be easily distributed over 
the optional start weeks without violating demand constraints. It 
can therefore be deduced that the demand constraint in this 
problem can be easily satisfied, which is reconfirmed by the 
identical optimization results regardless of cL-value. Moreover, 
the heuristic used favors an even-distribution of maintenance 

tasks over the planning horizon, which again helped in reducing 
the possibility of violating demand constraints. 
The remaining MMAS parameters investigated were found to 
have little influence on the optimization outcome. Nevertheless, r 
seemed to have the largest impact on the results, followed by ρ, 
w1, w2, α and β, pbest and cM. 
Stage 2: The best parameter set identified is identical to the 
standard parameter set except when w1=8 is used which resulted 
in a slightly improved standard deviation. 
Stage 3: Even though the best parameter set was only slightly 
different from the ‘standard’ parameter set, the best parameter set 
was used to solve the optimization problem using the MMAS 
algorithm with a new set of 20 random number seeds. The 
average OFV obtained was 136.85x105, which is very similar to 
the average OFV found with the ‘standard’ parameter values 
listed in Table 3.2. This confirms that optimization outcome has 
been very consistent across a range of random number seeds 
used. Also, it was found that within the range of parameter values 
specified in Table 3.7, the optimization outcome is fairly 
consistent with an average OFV of less than 0.3% higher than the 
best-found OFV. 

Table 3.7 Range of parameter values 

r ρ w1 w2 pbest cM α β 

200 to 
300 

0.6 to 
0.8 3 to 9 1 0.2 to 

0.9 
100,000 to 

120,000 1 1 to 
1.5 

 

3.4.3 Comparison of results of ACO and other 
metaheuristics  

The best results obtained when the ACO algorithms were used 
are given in Figure 3.4.  It should be noted that, as discussed 
previously, the number of evaluations (trial solutions) allowed in 
the ACO and other metaheuristics runs are identical. It can be 
seen that the BAS and MMAS algorithms have outperformed the 
algorithms that have been applied to this case study previously.  
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4. SUMMARY & CONCLUSION  
In this paper, a formulation for applying Ant Colony 
Optimization (ACO) to power plant maintenance scheduling 
optimization (PPMSO) has been developed and successfully 
tested on a 21-unit power plant case study to which other 
metaheuristics had been applied previously.   A formulation for 
heuristics to be used at each decision point was introduced for the 
PPMSO problem and tested on the 21-unit problem using two 
ACO algorithms, including the BAS (Best-Ant System) and 
MMAS (Max-Min Ant System).  Detailed sensitivity analyses on 
ACO parameters were also conducted in order to obtain a better 
understanding of the impact of the parameters on algorithm 
behavior and to obtain the best parameter set for the case study 
considered. 
The results obtained indicate that ACO has performed better than 
any of the other metaheuristics that had been applied to the case 
study considered previously.  Of the two ACO algorithms 
investigated, MMAS performed significantly better when tested 
statistically. 
The heuristic information introduced for the PPMSO problem in 
this paper resulted in a marked increase in algorithm 
performance, both in terms of the best solution found and 
convergence speed. The impact of the heuristic was more 
pronounced on the BAS algorithm, particularly in terms of 
finding a near-optimal solution from different starting positions 
in objective function space. Sensitivity analysis suggested that 
MMAS has similar performance for the case study across a range 
of parameter values identified. However, more instances will be 
investigated to understand the influence of ACO parameters on a 
general PPMSO problem, and to test the effectiveness of ACO 
algorithms in solving the general PPMSO problem, including a 
real hydropower system with a high degree of complexity. 
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